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Abstract : Advances in computer technologies now allow for the accumulation of construction process
data in large quantities . The disadvantage of having a large number of observations is that there are
problems with goodness-of-fit tests. This paper addresses the issue of the effect goodness-of-fit tests
have on selecting a probability distribution function for use in construction process control, automation
or in the development of simulation models of processes. In the case of a large number of observations
the sum of small variations can yield goodness-of-fit results which could cause one to believe that the

Probability Distribution Function does not accurately represent the underlying population.
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1 INTRODUCTION

New technologies are allowing researchers and
managers to accumulate large quantities of
automated real-time project process data. A trace-
driven process control or simulation using these large
data sets can be developed, however, there are major
drawbacks to such a course of action as the process
control or simulation will reproduce solely what has
already happened. There is also the issue that using
large amounts of data may require the use of time-
consuming computational procedures. Therefore,
standard probability distribution functions (PDF) are
often used to represent this empirical data, in fact,
standard distributions level data irregularities which
can derive from field observations.

This paper addresses the issue of the effect
goodness-of-fit tests have on selecting a probability
distribution function for construction process control
and simulation modeling.

1.1 Project Data

The data used in this research was acquired from
the Atkinson-Washington-Zachry (AWZ) joint
venture on the Eastside Reservoir Project in
California, U.S.A. AWZ operates a fleet of
Caterpillar Inc. (CAT) 785 trucks on this project.
These trucks are equipped with Caterpillar's Vital
Information Management System (VIMS) and the
CAT Truck Payload Monitoring System (TPMS).
These two systems automatically record a large
amount of truck performance data. Eight months of
TPMS data from this project, representing 54,000

truck cycles, is the original data for all of the
subsequent statistical research presented in this
paper.

1.2 Probability Distribution Functions

The problem of collecting and analyzing data
confronts all researchers trying to model real world
activities. The required process inputs for a
simulation model are usually approached by fitting a
statistical distribution to a collection of sample
observations . Since many classical distribution
functions could fit the sample, goodness -of-fit tests
are performed on the constructed probability
distribution function [1].

2 GOODNESS-OF-FIT TESTS

The methods available for investigating the
quality of the fitted distributions can be divided into
heuristic procedures and goodness-of-fit hypothesis
tests. Heuristic procedures include frequency
comparison and probability plots. Frequency
comparisons are graphical comparisons between the
histograms of the fitted and the original distribution.
Probability plots are graphical comparisons of the
data distribution with the fitted distribution, these can
be either probability-probability (P-P), or quantile-
quantile (Q-Q) plots. P-P and Q-Q plots reduce the
problem of comparing distribution functions to
comparing a straight line (the fitted distribution) to a
curve (the data distribution). While admitting the
existence of these alternate methods those techniques
are not the issue under consideration in this research.
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2.1 Goodness -of-fit Tests

Goodness-of-fit tests represent a statistical
hypothesis test used to assess if the input data is an
independent sample from a particular distribution
function. Three tests have been developed for this
purpose: Chi-square, Kolmogorov-Smirnov, and
Anderson-Darling.

The Chi-square test, developed by K. Pearson in
1900, is a formal comparison of an input data
histogram with the fitted distribution. It should be
noted that the choice of the number and size of class
intervals greatly influences the results of the Chi-
square test. To ensure validity of the test, Law and
Kelton suggest the use of a number of intervals k, so

that np ? 5, where n = number of data points and p =
Ilk [7]. The Chi-square test was derived for the case
of estimating parameters by maximum likelihood and
is best used with a large number of samples, >50 [1].
But there appears to be problems when the sample
size becomes "very" large.

The Kolmogorov-Smirnov (K-S) test compares
an empirical distribution function with the
distribution function of the hypothesized distribution.
The K-S test does not require grouping of the data
and eliminates the problem of interval specification.
The K-S test checks if the empirical data could have
originated from a theoretical distribution with the
estimated parameters. Law and Kelton [7] state that
the K-S test has several advantages over the Chi-
square test: 1) the test does not require grouping of
the data in any way, 2) it is valid for the exact sample
size and 3) it is more powerful against alternative
distributions.

The Anderson-Darling (A-D) test differs from the
K-S test on the weight given to the tails of the
distributions. In fact, it was designed to detect
discrepancies in the tails [7].

2.2 Number of Class Intervals

There is no definitive guide for choosing the
number of intervals. Several methods have been
suggested. Montgomery and Runger [8] suggest that,
to avoid uninformative histograms with too many or
too few class intervals, between 5 and 20 intervals
should be used. They further state that the researcher
should calculate the number of intervals by taking
the square root of the number of observations.
Abourizk and Halpin suggest the use of Sturges'
Rule for selecting the number of class intervals.
Sturges' Rule states that for n observations Xi to be
summarized in a frequency distribution, the number
and width of class intervals for the distribution
should be calculated with the following equations:

Number of class intervals = I + 3.322 log10 n

Width class interval = Xmn:c - Xm;n / No. class intervals

Where n = sample size

Xmax and X,,, = highest and lowest observations

Figure i compares the difference in the number of

class intervals resulting from the square root and the
Sturges' rule approaches. It is obvious that for data

containing fewer than 100 observations the rules will

furnish similar results, but beyond that point they

diverge rapidly. With 100 observations the square

root value would be 10 and the Sturges' 7 but with

500 observations the values are 22 and 10. The

square root guidance suggests a number twice that of

the Sturges' rule.

Figure 1. Number of class intervals according to
square root and Sturges' rules.

The documentation for the statistical computer
program BestFit [4] suggests that goodness - of-fit
tests are very sensitive to the magnitude of n (the
number of data points).

If n is small, the goodness-of-fit will only
measure large differencse between the input
data and the distribution function. As n

increases , the modified test statistics increase
and the null hypothesis will be rejected more
often . * The results produced by these tests
should be considered "guidelines" in selecting a
fit. Always evaluate the results by comparing
statistics and graphs before accepting or
rejecting aft [4].

* Our emphasis.

When the parameters of the distribution must be
estimated from the sample data, it can be expected
that the goodness -of-fit tests will give more
meaningful information if small samples are used.
Phillips [9] confirms this assumption saying "slight
modifications of the calculated statistics are given to
enable the points to be used with small samples."

2.3 Goodness -of-fit Computer Programs

Computer software programs have been
developed that automatically assess the goodness-of-
fit of sample data to distribution functions. The
program Visual Interactive Beta Estimation System
(VIBES) was used by Abourizk, Halpin and Wilson
[2] to fit and shape beta distributions to their sample
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data. The program BestFit compares the sample data
with up to 26 different distributions [4]. The
parameters for each distribution are compared to the
sample data using maximum likelihood estimators;
then they are optimized and the Chi- square test, the
Kolmogorov-Smirnov test and the Anderson -Darling
test statistics are calculated.

The goodness-of-fit statistic tells how probable it
is that a given distribution function reproduces the
data set. Which translates into: whether input data
was created by the distribution function reported by
calculated distributions [4, 6]. The critical value
involved is a goodness- of-fit measurement that is
compared to the goodness-of-fit of the selected
distribution. This measurement is calculated
differently for the Chi- square, Kolmogorov-Smirnov
and Anderson-Darling tests.

2.4 Distribution fitting

The raw project data was formatted and entered
into the BestFit program to obtain a fitted
distribution. Three different methods for testing the
match of the suggested distributions to the input data
were utilized to rank suggested distributions; Chi-
square, Kolmogorov-Smirnov and Anderson-Darling.
The on-line self help for the BestFit program offers
suggestions about each of the tests:

There is no specific goodness-of-fit test that
will give you the "best" result. Each test has its
strengths and weaknesses. You must decide
which information is most important to you
when considering which test to use.

The Chi-square test is the most common
goodness-q1-fit test. It can be used with any type
of input data (sample, density or cumulative)

and any type of distribution function (discrete or
continuous). A weakness of the Chi-square test

is that there are no clear guidelines for selecting

intervals. In some situations, you can reach
different conclusions from the same data
depending on how you specified the intervals
(number ofelasses). *

The Kolmogorov-Smirnov test does not
depend on the number of intervals, which makes
it more powerful than the Chi-square lest. This
test can be used with any type of input data but
cannot be used with discrete distribution
functions. A weakness of the Kolmogorov-
Smirnov test is that it does not detect tail
discrepancies very well."

The Anderson- Darling test is very similar to
the Kolmogorov-Smirnov test, but it places more
emphasis on tail values. It does not depend on
the number of intervals. A weakness of the
Anderson-Darling test is that it can only be used
with sample input data [4].

*Our emphasis

The choice of which test to use for selecting
probability distribution functions to use in
controlling automated processes or for simulation
modeling is based on different factors:

• Goodness-of-fit test used in previous
researches . The Chi-square and Kolmogorov-
Smirnov tests have been used in previous
construction simulation modeling research. The
Chi-square test was used by Clemmens and
Willenbrock [5]. More recently, probably thanks
to the new computer possibilities, Kolmogorov-
Smirnov was used by Abourizk [3]. The
Anderson-Darling test has not been used
extensively in construction based research.

• Outcome of consistent results . The Chi-square
test may be biased by the choice of the number of
class intervals [7]. The number of class intervals
in which the data is divided does not influence
Kolmogorov-Smirnov and Anderson-Darling test.

• Behaviour of test regarding goodness -of-fit.
The Anderson-Darling test was specifically
designed to detect discrepancies in the tails of the
distribution [8]. Chi-square and Kolmogorov-
Smirnov, on the other hand, give a lower weight
to the differences of the tails of the distributions.

Evaluating the advantages and disadvantages of
the different goodness-of-fit test methods, it appears
that the Kolmogorov-Smirnov test is the most
appropriate for construction models because: l )
previously documented applications, 2) the
consistency of results, and 3) the weight given to the
differences of the distribution tails. However, the
results of using all three of the goodness-of-fit tests
are presented in this research to emphasis the effect
the decision to use a specific test has on probability
distribution function selection.

3 INPUT DATA FITTING RESULTS

The research used five categories of data: load
time, haul time, dump time, return time and cycle
time. The traveled distance does not influence load
time and dump time, therefore the analysis of such
data does not consider the distance parameter. Haul
time, return time and cycle time are analyzed
considering the traveled distance.

An attempt to fit a distribution to the input data
was made only if:

1) There was a minimum of 100 data points in the
case of haul, return, and cycle tunes (where the
number of data points is influenced by the
distance parameter).

2) There was a minimum of 500 data points in the
case of load and dump tunes (where the number
of data points is not influenced by the distance
parameter).
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3.1 Class Interval Effect

The determination of differences between fittings
based on a specific class interval decision rule,
Square root or Sturges' yielded results confinning the
information in the literature:

• The decision rule influences the results primarily
when the Chi-square fitting method is utilized
(almost 25% of the time).

Fitted probability distribution functions obtained
by entering the raw haul, return, and cycle time data
into the BestFit program were developed using both
of the class interval decision rules. Then the
resulting first ranked distribution types for both the
Square root and Sturges rules were compared. The
ranking were' acquired using each of the three
goodness-of-fit tests, so the comparisons of the class
interval rule effects are based on the same goodness-
of-fit test. Figure 2 presents the number of times the
first ranked probability distribution function resulting
from both the class interval decision rules matched
(matching/non matching fits).

ChLsquue KdmogorovSmlmw

Data mting method

®Malrhing O N on matching

Mderaon.D.ting

Figure 2. Allotment based on goodness-of-fit rule of
matching/non matching haul, return, and cycle time

distribution fits.

The analysis reveals that almost 25% of the
resulting theoretical distributions (57 out of 248) may
change if the Chi-square test is used to select the best
matching probability distribution function. When
using either the Kolmogorov -Smirnov or Anderson-
Darling methods the change would occur in less than
5% of the cases . This data seems to support the
warnings found in the literature about the weakness
of the Chi -square test . "In some situations , you can
reach different conclusions from the same data
depending on how you specified the intervals. [4]"

3.2 Load time data

The results of the load -time data distribution
fitting based on the three goodness -of-fit tests are
shown in Table 1

In only one case (the 130-140 ton range) out of
the six investigated was the Chi-square test not
influenced by the choice of class interval. In the case
of both the Kolmogorov-Smirnov or Anderson-
Darling tests the class rules did not change the
outcome of the best-ranked probability distribution.
Again the data seems to support the warnings found
in the literature about the Chi-square test.

Table 1. Distribution load time data fitting results.

Data Chi-square K-S A-D

"'^ Mule paints

110-120 Square 2420 Triangular Logistic Normal

Sturges 2420 Rayleigh Logistic Normal

130-140 Square 7000 Extreme
val.

Pearson
VI

Pearson V

Sturges 7000 Extreme val. Pearson
VI

Pearson V

140-150 Square 8854 Extreme
val.

Pearson V Pearson V

Sturges 8854 Lognorm Pearson V Pearson V

150-160 Square 7197 Chi-square Pearson V Pearson V

Sturges 7197 Pearson V Pearson V Pearson V

160-170 Square 3308 Extreme
val.

Pearson V Pearson V

Sturges 3308 Loglogistic Pearson V Pearson V

170-180 Square 626 Extreme
val.

Loglogistic Loglogistic

Sturces 626 Loglogistic Loglogistic Loglogistic

3.3 Haul time data

The haul time depends on the distance traveled by

the trucks. Therefore, the data was divided and
grouped in ranges of 0.10 miles and a distribution

fitting was attempted only for ranges with at least
100 data points. Table 2 shows the results of the

haul-time data distribution fitting based on the three
goodness-of-fit tests. These results fail to support in
such a dramatic manner the sensitivity of the Chi-
square test as only one data set displays a difference

in selected distribution. However, this is one in four

or 25%.
Figure 3 analyses how the types of distributions

are apportioned based on the distribution fitting test,
Chi-square, Kolmogorov-Smirnov, or Anderson-
Darling. Extreme value and Beta distributions
represent more than 60% of the fits whatever fitting
test is implemented. The Beta distribution exhibits
the greatest variation based on the fitting test
employed, ranging from less than 20% of the fits in
the case of Chi-square test, to more than 40% when
the Anderson-Darling test is used.

The analysis presented in Figure 2 demonstrates
that probability distribution fits obtained with the
Kolmogorov-Smirnov method are not influenced by
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the class interval selection method. In fact the K-S
test seems almost immune to class interval variation.

The question of haul distance variation was also
investigate to determine if it is possible to identify a
trend in the probability distribution function fits
based on the distance traveled by the haul trucks.

Figure 4 analyses the haul data based on four
different distance ranges: 0.5-1 miles, 1-1.5 miles,
1.5-2 miles, and 2-2.5 miles. For clarity, only
distributions with at least 10% of the fits are shown.
It is clear that Beta distribution is fairly constant and
not influenced by the traveled distance. Extreme
Value distribution percentages vary with a maximum
at the 1-1.5 mile range, but it does not seem to show
a trend.

Table 2. Distribution fitting results for haul time
data, distance range 0.5-0.6 miles.

Distance 0 .5 to miles
0.6

Data Chi- K-S A-D
square

points

130-140 Square 688 Extreme Beta Extreme
Val. Val.

Sturges 688 Extreme Beta Extreme
Val.I Vat.

140-150 Square 1162 Extreme Extreme Pearson V
Val. Val.

Sturges 1162 Extreme Extreme Pearson V
Val. VaL

150-160 Square 940 Extreme Beta Beta
Val.

Sturges 940 Extreme Beta Beta
I Val.

160-170 Square 405 Extreme Beta Beta
I Val.

Sturges 405 Triangul Beta Beta
ar

ProMMelr C.**aO wA-$.

Figure 3. Percentages of aggregate haul time data distribution fits per test method using Sturges' rule.

wox

90%

wx

1O%

X%

2O%

»x

0%

Oftb w mope WA64

24604.1

Figure 4. Effect of Haul distance on PDS selection, based on K-S distribution fit test and using Sturges' rule
for class interval selection.
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4 CONCLUSION

The need for reliable process control and
simulation models of construction operations has
been discussed and proposed by many researchers.
Many of these same researchers have stated that the
quality of the process control or simulation output is
strictly related to the quality of the filtered data.
Furthermore, it is necessary that the distribution
functions used represent activity durations be
appropriate. It is also a fundamental requirement that
engineers understand the effect that a probability
distribution function choice will have upon the
controlled process.

Advances in computer technologies now permit
the accumulation of construction process data in
large quantities and the reduction of that data into
appropriate distributions for use in real-time process

control or for simulation modeling. The
disadvantage of having such a large number of
observations is that there are problems with matching
large data sets to statistical PDFs using goodness-of-
fit tests. Goodness-of-fit tests compare the proposed
Probability Distribution Function to the input
observations. When the number of observations is
small the tests provide a clear indication of how well
the observations match the distribution function. In
the case of a large number of observations the sum of
small variations can yield goodness-of-fit results
which could cause one to believe that the Probability
Distribution Function does not accurately represent
the underlying population. Consequently , smaller
data samples that are less well matched to their
Probability Distribution Functions can provide better
levels of confidence than large data sets that are
better matched.

The research confirmed that the use of Chi-square
fitting procedure is subjective regarding the choice of
the number of class intervals. This produces results
that, depending on the class interval used, differ
almost 25% of the time a fitting procedure is
attempted. The use of the Kolmogorov-Smirnov
fitting test seems appropriate and gives results that
fluctuate much less. The results of the fitting
procedure seemed to be influenced by the number of
observations that is included in the data set. Larger
data sets, such as the load and dump cycle times,
never returned the Beta distribution function as the
first ranking distribution in the fitting procedure. On
the other hand, limited data sets, such as haul and
return cycle times, had the Beta distribution ranked
first using BestFit on some occasions. A more in
depth study is needed to evaluate the influence of the
quantity of data on the results of the fitting
procedure.

When fitted haul time distributions were plotted
against haul distance no discernable trends were
evident. It appears, therefore, that haul distance does
not influence the selected the distribution function.

The Beta distribution function appeared without
peaks or lows, but in a small proportion, about 20%;
the Extreme Value distribution appeared with higher
fluctuation and higher percentage values.

The results of the fitting procedure appeared to be
influenced by the dimension of the data sets. Large
data sets returned theoretical distributions that were
rejected by BestFit for their low confidence level.
BestFit rarely rejected the results obtained from
smaller sets. An investigation of the influence data
set size has on fitting confidence may reveal better
methods for evaluating the most appropriate method
for fitting a theoretical distribution function to large

data sets.

5 REFERENCES

(1) AbouRizk, S.M., and Halpin, D.W. (1990).
"Probabilistic simulation studies for repetitive
construction processes." J. of Constr. Engrg. and

Mgrnt., ASCE, 116(4), 575-594

(2) AbouRizk, S.M., Halpin, D. W., and Wilson J.
R. (1991). "Visual interactive fitting of beta
distributions." J. of Constr. Engrg. and Mgmt.,

ASCE, 117(4), 589-605

(3) AbouRizk, S.M., Halpin, D. W., and Wilson J.
R. (1994). "Fitting beta distributions based on sample

data." J. of Constr. Engrg. and Mgmt., ASCE, 120(2),

288-305

(4) BestFit Software on Line Help. (1993). Palisade

Corporation, NY

(5) Clemmens, J.P., and Willenbrock, J.H. (1978).
"The SCRAPESIM Computer Simulation." J of the

Constr. Division, ASCE, 104(CO4), 419-435

(6) D'Agostino, R.B., and Stephens, M.A. (1986).
Goodness-of-fit techniques. Marcel Dekker Inc., NY

(7) Law, A.M. and Kelton, W.D. (1991).
Simulation modeling and analysis. McGraw-Hill, NY

(8) Montgomery, D.C., Runger, G.C. (1994).
Applied Statistics and Probability for Engineers.

John Wiley, NY

(9) Phillips, D.T. (1972). "Applied goodness-of-fit
testing." Publication No.1, Operation Research

Division, American Institute of Industrial Engineers,

Atlanta, Georgia

108


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

